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We propose a model of network growth that generalizes the deactivation model previously suggested for
complex networks. Several topological features of this generalized model, such as the degree distribution and
clustering coefficient, have been investigated analytically and by simulations. A scaling behavior of clustering
coefficient C�1/M is theoretically obtained, where M refers to the number of active nodes in the network. We
discuss the relationship between the recently observed numerical behavior of clustering coefficient in the
coauthor and paper citation networks and our theoretical result. It shows that both of them are induced by
deactivation mechanism. By introducing a perturbation, the generated network undergoes a transition from
large to small world, meanwhile the scaling behavior of C is conserved. It indicates that C�1/M is a universal
scaling behavior induced by deactivation mechanism.
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I. INTRODUCTION

Many social, biological, and communication systems can
be properly described as complex networks with nodes rep-
resenting individuals or organizations and links mimicking
the interactions among them �1–3�. Examples are numerous:
these include the Internet �4,5�, the World Wide Web �6,7�,
biological networks �8,9�, food webs �10�, social networks
�11�, etc. Recent empirical studies indicate that the networks
in various fields exhibit some common topological character-
istics: a small average distance as random networks, large
clustering coefficient as regular networks �small-world prop-
erty� �12� and a power-law degree distribution �scale-free
property� �13�. The ubiquity of complex networks has in-
spired tremendous investigations on them. Among these
flourishing researches, the effect of aging is of particular
interest �14–18�, since it is a universal mechanism in reality.
For instance, in the movie actor collaboration network, the
more famous an actor is, the more chances he will have to
act in new movies. But, no matter how famous he may be,
every star will become gradually inactive as time goes on.
This aging effect can greatly influence the evolution of net-
works and results in peculiar network structural property
�14,15�.

Recently, Börner et al. introduced a general process
model that simultaneously grows coauthor and paper citation
networks �19�, in which the core assumption is that the twin
networks of scientific researchers and academic papers mu-
tually support one another. In their model, each of the au-
thors and papers is assigned a topic, and authors read, cite,
produce papers or coauthor with others only in their own
topic area. Interestingly, they found that the clustering coef-
ficient C of the simulated paper citation network is linearly

correlated with the number of topics. We note that the main
underlying dynamic rule governing the evolution of the net-
work is aging. For example, due to the lifespan of human,
once authors are older than a specified age, they will be set
deactivated, and do not produce papers or coauthor with oth-
ers any longer. Furthermore, papers cease to receive links
when their contents are outdated. Therefore, these consider-
ations motivate us to theoretically investigate the effect of
aging on the clustering coefficient of the network. In the
present paper, we concentrate on this ingredient of self-
organization of the coauthor and paper citation networks and
propose a simple generalized model, in which the main dy-
namic is deactivation mechanism. We will demonstrate that
the behavior of clustering coefficient C in the coauthor and
paper citation networks is universal in networks generated by
deactivation mechanism.

This paper is organized as follows. In Sec. II, the model is
introduced. In Sec. III, we give both the numerical and ana-
lytic results about the effect of deactivation mechanism on
network structure, including degree distribution �Sec. III A�
and clustering coefficient �Sec. III B�. An interesting scaling
behavior of C is obtained. In Sec. IV, a structural perturba-
tion is introduced. We show that the perturbation leads to a
structural transition from large to small world �Sec. IV A�,
while the scaling behavior of C is conserved �Sec. IV B�.
Finally in Sec. V, we discuss the relationship between our
result and the behavior of clustering coefficient in the coau-
thor and paper citation networks and give a summary.

II. THE MODEL

In the present model, each node can be in two different
states: active or inactive �18,20,21�. The evolution process
starts with a one-dimensional lattice consisting of M active
nodes with periodic boundary condition and coordination
number 2z �22�. Then, in each time step
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�1� Add a new node into the network, and connect it to m
nodes randomly chosen from the M active ones.

�2� Activate the new node.
�3� Deactivate one of the active nodes. The probability

that the node i is deactivated is given by

��ki� =
�

ki
, �1�

where the normalization factor is defined as �
= �� j�A1/kj�−1. The summation runs over the set A of the
currently M +1 active nodes.

It is worthwhile to note that, when M =m and z= � M
2

�, the
present model reduces to the famous deactivation model in-
troduced by Klemm and Eguíluz �KE model� �18�. For con-
venience, we call this generalized deactivation model GKE
model.

III. STRUCTURAL PROPERTIES

A. Degree distribution

By using the continuous approximation similar to that
used in Ref. �18�, the degree distribution P�k� can be ob-
tained analytically for GKE model. Let us first derive the
degree distribution p�t��k� of the active nodes at time t. It
evolves according to the following master equation:

p�t+1��k + 1� = p�t��k�
m

M
�1 − ��k��

+ p�t��k + 1��1 −
m

M
��1 − ��k + 1�� . �2�

On the right-hand side of Eq. �2�, the first term accounts for
the process in which an active node with degree k at time t is
connected to the new node and not deactivated in the next
time step; The second term indicates the process that an ac-
tive node with degree k+1 at time t is not connected to the
new node and still active in the next time step.

We investigate the behavior of � in time evolution. Figure
1 shows the dependence of the normalization factor � on
time t. We find that � approaches a stable value with certain
fluctuations as soon as the evolution of the network starts.
We assume that the fluctuations of the normalization factor �
are small enough, i.e., it can be treated as a constant. Then,
the stationary case p�t+1��k�= p�t��k� of Eq. �2� yields

p�k + 1� − p�k� =
− � − �� − 1�k
k�k + � − ��

p�k� , �3�

where �= �M
m +1. Treating k as continuous we write down the

equation

dp

dk
=

− � − �� − 1�k
k�k + � − ��

p�k� , �4�

which yields the solution

p�k� � k−�+1. �5�

When the system size N is large compared with M, the de-
gree distribution of the whole network P�k� can be approxi-

mated by considering the inactive nodes only. Thus P�k� can
be calculated as the rate of the change of the degree distri-
bution p�k� of the active nodes. We find

P�k� = −
dp

dk
= ck−�, �6�

where c= ��−1�m�−1 is the normalization constant. Finally,
the exponent �=3 is obtained from a self-consistent condi-
tion

2m = 	
m

�

kP�k�dk . �7�

The exponent � can be tunable if we introduce the initial
attractiveness just like that of the model in Ref. �18�. Since it
is not our focus, we will not show this effect here.

In Fig. 2, we plot the cumulative degree distribution of
GKE networks by simulations. We obtain a power law scal-
ing with best-fitted exponent �−1=1.96±0.02, which is in
agreement with the analytical result. In fact, the exponent �
is dependent on m �20�, which can be ignored when m is
large. However, the number of active nodes M has no effect
on degree distribution exponent �, which is analytically and
numerically obtained.

B. Clustering coefficient

The clustering coefficient C�l� of node l with degree kl

can be defined as follows:

C�l� =
2E�l�

kl�kl − 1�
, �8�

where E�l� is the number of links between neighbors of node
l.

According to the definition of the GKE model, when a
new node with m links is added into the network, the links

FIG. 1. Illustration of the normalization factor � as a function of
time t with the parameters m=10 and M =30. The amplified version
can be seen in the inset. The data points correspond to system size
N=2�104, and each is obtained as an average of 100 independent
runs.
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are attached to the nodes randomly selected from the active
ones. Thus, the probability that two arbitrary active nodes are
connected is m

M . It follows that a node l with degree kl=m has

E�l� =
m

M

kl�kl − 1�
2

. �9�

If l is deactivated in the time step of its generation its neigh-
borhood does not change any more and C�l� keeps stable.
Otherwise, node l is not deactivated. In the next time step, a
new node j is added. As we note, the probability that node j
makes connection to l is equal to the probability that one of
the neighbors of node l is deactivated in the last time step.
We assume that if kl is added by 1, one of its active neigh-
bors has already been deactivated in the last time step. Thus,
when the newly added node is connected to node l, one of its
neighbors s is inactive and one possible link between the
newly added node and s is missed. Then we have

E�l� =
m

M
� kl�kl − 1�

2
− 1� , �10�

where kl=m+1. Also, if kl=m+2, there will be two inactive
nodes in the neighbors of node l causing another two pos-
sible links to be missed. Thus we obtain

E�l� =
m

M
� kl�kl − 1�

2
− 1 − 2� , �11�

where kl=m+2. This process repeats until node l is deacti-
vated, whose neighborhood does not change any more. By
induction, we have

E�l� =
m

M
� kl�kl − 1�

2
− �

�=1

kl−m

�� . �12�

Thus the clustering coefficient C�l� depends only on the de-
gree kl. The exact relation is

C�l� =
m

M
�1 −

�kl − m + 1��kl − m�
kl�kl − 1� � . �13�

The clustering coefficient C of the whole network is the av-
erage of C�l� over all nodes, i.e.,

C =
1

N
�
l=1

N
m

M
�1 −

�kl − m + 1��kl − m�
kl�kl − 1� � . �14�

Writing Eq. �14� in continuous form yields

C = 	
m

� m

M
�1 −

�k − m + 1��k − m�
k�k − 1� �P�k�dk , �15�

where P�k� is the degree distribution which we have derived
above. Finally, the result is

C =
1

M
�5m

6
−

7

30
+ O�m−1�� . �16�

Obviously, when M =m, the clustering coefficient of the KE
model is recovered �23�.

From Eq. �16�, we know that the clustering coefficient C
is independent of the system size N. This asymptotic behav-
ior of C is reported in Fig. 3. In the limit of large N, the

FIG. 2. �Color online� Cumulative degree distribution of GKE
networks with parameters �a� M =20; m=4 �squares�, 8 �upward
triangles�, 14 �downward triangles�, 20 �circles� and �b� m=20;
M =20 �squares�, 40�upward triangles�, 80 �downward triangles�,
100 �circles�. The data points correspond to system size
N=2�104, and each is obtained as an average of 100 independent
runs. The two dashed lines have slope −2.0 for comparison.

FIG. 3. Illustration of the average clustering coefficient C as a
function of system size N with the parameter m=4 and M =10. The
clustering coefficient C approaches a stationary value about 0.31,
which is precisely predicted by Eq. �16�. Each data point is obtained
as an average of 1000 independent runs.

UNIVERSAL SCALING BEHAVIOR OF CLUSTERING… PHYSICAL REVIEW E 74, 046103 �2006�

046103-3



clustering coefficient C gets to a stationary value of 0.31,
which agrees with the analytical result.

It is important to point out that the clustering coefficient
has scaling behavior C�1/M. Extensive numerical simula-
tions perfectly confirm this result �see Fig. 4�. This behavior
can be related to the recent numerical study on the coauthor
and paper citation networks, which will be discussed in
Sec. V.

IV. STRUCTURAL PERTURBATION

A. Structural transition

We introduce a structural perturbation to the GKE model
by modifying step �1� of the definition as follows: Add a new
node with m links to the network. With probability p, attach
one of the new node’s links to a randomly selected inactive
node. The other links are then attached to nodes chosen ran-
domly from the M active ones. We will show that the pertur-
bation will lead to a phase transition �24� from large to small
world in the network without changing the scale-free prop-
erty.

In GKE model, each node can be represented by the time
step of its generation. It is clear that, when p=0 the GKE
network is structured �18�, i.e., the time ordering exists and
the mean field manner is absent �20,25�. We denote l�t� as
the average distance for pairs of nodes separated by time
interval t. Figure 5 shows the simulation results of the varia-
tion of l�t� with perturbation parameter p. It can be found
that, when p=0, l�t� increases linearly with t, i.e., the time
ordering indeed exists. Since the nodes in the network are
uniformly distributed on time axis, we can easily obtain that
the average distance L is linearly correlated to the system
size N, i.e., L�N, which indicates the absence of small world
effect. However, once p is a small finite value, l�t� becomes
independent of time interval t, i.e., the time ordering van-
ishes. Meanwhile, all nodes with the same degree can be

considered to be statistically equivalent, and the mean-field
manner is recovered.

Let d�i , j� denote the distance between node i and node j,
and thus the average distance of the model with system size
N is

L�N� =
2	�N�

N�N − 1�
. �17�

where the total distance is

	�N� = �
1
i�j
N

d�i, j� . �18�

Intuitively, when a new node is added, the distance between
old nodes will not increase. Hence we have

	�N + 1� 
 	�N� + �
i=1

N

d�i,N + 1� , �19�

thus

	�N + 1� 
 	�N� + �
i=1

N

d�i,x� + N , �20�

where x is the active node connected to the newly added one.
Since p is nonzero, by using mean-field approximation
�26,27�, we have

�
i=1

N

d�i,x� 
 L�N��N − 1� . �21�

Thus, the inequality �20� reduces to

	�N + 1� 
 	�N� +
2	�N�

N
+ N . �22�

Rewriting �22� in continuous form will yield

FIG. 4. �Color online� The analytical result of the clustering
coefficient of GKE network, C�M�, as a function of M �line�, in
comparison with the simulation �circles� results. Other parameters
for the simulation are m=10 and N=2�104. Each data point is
obtained as an average of 100 independent runs.

FIG. 5. �Color online� Illustration of l�t� as a function of time
interval t, with perturbation p=0.00 �solid line�, 0.01 �dashed line�,
0.05 �dotted line�, and 0.10 �dotted-dashed line�. Other parameters
for the simulations are m=3, M =10, and N=8000. Each data point
is obtained as an average of 50 independent runs.
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d	�N�
dN



2	�N�

N
+ N , �23�

which leads to

	�N� 
 N2 ln N + B , �24�

where B is a constant. As 	�N��N2L�N� and N is suffi-
ciently large, we obtain L�N�
 ln N, i.e., the increasing ten-
dency of L�N� is not faster than ln N, which predicts the
presence of small-world property.

In fact, the GKE network is similar to a chain of dense
clusters locally connected, i.e., it is like a regular lattice in
topological view. For this peculiar topology, all of the links
in the network are local. When a perturbation is introduced,
the network undergoes a crossover from structured network
to unstructured network. Actually, the perturbation just
means that, with a probability, every node rewires one of its
local links to a randomly selected node, which is precisely
the definition of the model proposed by Watts and Strogatz
�12�. That is to say, the crossover is just the small-world
phase transition �24�.

In Fig. 6, we show the dependence of average distance L
on system size N with p=0.00 and p=0.01 in GKE network.
For p=0.00, the average distance grows linearly L�N, the
same behavior observed in one-dimensional regular lattices.
Once p is a small finite value, L becomes logarithmic related
to N, i.e., L� ln N. The logarithmic increase of average dis-
tance with system size predicts that the phase transition from
large-to small-world occurs, which is in agreement with the
analytical result.

It should be noted that, although we introduce a structural
perturbation into the network, the scale-free property is not
affected and the power-law exponent �=3 is maintained. Nu-
merical simulations shown in Fig. 7 confirm this feature.

B. Universal scaling behavior of clustering coefficient

In the following section, we investigate the dependence of
clustering coefficient C on perturbation parameter p. Analo-
gous to the derivation of clustering coefficient in GKE net-
work without perturbation, we give an approximately ana-
lytical result. According to the modification of the model,
when a new node l with m links is added into the network,
one of the links is attached to a randomly selected inactive
node s with probability p. That is to say, with probability p,
one of the neighbors of l is inactive. Since the system size N
is large compared with M, we assume that node s is apart
from the active nodes �28�. Thus, m−1 possible links be-
tween neighbors of l are missed. Furthermore, node s is al-
ways apart from the afterward added nodes that are con-
nected to node l, which causes another k−m possible links
missed. Thus we have

C�l� =
m − 1 � p

M
�1 −

�kl − m + 1��kl − m�
kl�kl − 1� �

− p
m − 1 � p

M

2�m − 1�
kl�kl − 1�

− p
m − 1 � p

M

2�kl − m�
kl�kl − 1�

.

�25�

Similar to the derivation of Eq. �16�, we have

C =
m

M
�5

6
−

7

30m
� −

1

M
�13

6
−

7

30m
�p + O�p2� . �26�

It is worthwhile to note that the scaling behavior
C�1/M is conserved though there exist certain fluctuations
in the network which lead to a structure transition. That is to
say, C�1/M is a universal scaling behavior of clustering
coefficient induced by deactivation mechanism. Figure 8
shows the log-log plot of the clustering coefficient C versus

FIG. 6. �Color online� Illustration of the average distance L as a
function of N, with p=0.00 �squares� and p=0.01 �circles�. When a
perturbation p=0.01 is introduced, L grows logarithmically with N.
The values can be fitted well by a straight line, which is typical of
the small-world effect. Other parameters for these simulations are
m=4 and M =10. Each data point is obtained as an average of 100
independent runs.

FIG. 7. �Color online� Illustration of the cumulative degree dis-
tribution of the GKE network with perturbation p=0.00 �squares�,
0.01 �upward triangles�, and 0.10 �circles�. The fitted power-law
exponent is �−1=1.97±0.02. Other parameters for these simula-
tions are m=10, M =20, and N=2�104. Each data point is obtained
as an average of 100 independent runs. The dashed line has slope
−2.0 for comparison.
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M with different perturbation parameters obtained by simu-
lations. We can see that the perturbation has almost no effect
on the scaling behavior of C, which agrees well with the
analytical result.

From Eq. �26�, we know that, when p is sufficiently small,
the clustering coefficient C has a linear relation with p. Fig-
ure 9 shows the simulation result of clustering coefficient C
as a function of perturbation parameter p, with m=4 and
M =10. The slope found numerically is 0.223, slightly larger
than the analytical result 1

M
� 13

6 − 7
30m

�=0.21. The deviation is
due to the approximation �28� used in the theoretical deriva-
tion of C. It is clear that the node s is not always apart from

all the active nodes, which actually causes less than m−1
possible links missed between neighbors of l. Thus, we can
easily find the precise slope should be a little larger than that
obtained from Eq. �26�.

V. DISCUSSIONS AND CONCLUSIONS

We first discuss the relationship between the numerical
behavior of clustering coefficient in the coauthor and paper
citation networks and our theoretical result. According to the
model of Ref. �19�, each of the authors and papers is as-
signed a topic, and authors can only cite, produce papers or
coauthor with others in their own topic area. It means that,
by topics the whole network is divided into many subnet-
works which evolve separately and simultaneously. Each of
the subnetworks can be reduced to a GKE network and the
number of these GKE subnetworks is just the number of the
topics denoted as n. In each subnetwork, the number of ac-
tive authors who are doing research or the number of active
papers that are likely to be cited just corresponds to the num-
ber of active nodes in GKE network, which is denoted as M.
Since the whole network is divided into n subnetworks, we
intuitively know that the number of active authors or papers
in each subnetwork is inversely proportional to the number
of topics, i.e., M �1/n. When each subnetwork can be
treated as a GKE network, incorporating with our theoretical
result C�1/M, we can easily obtain that C�n. Since each
subnetwork evolves parallelly, the clustering coefficient of
the whole network has the same behavior that is linearly
correlated with the number of topics. Therefore, by using our
theoretical result we can indicate that the numerical behavior
of clustering coefficient in the coauthor and paper citation
network presented in Ref. �19� is due to the deactivation
mechanism. Furthermore, in the above discussion, we reduce
the aging mechanism to deactivation mechanism. In fact, in
the model of Ref. �19�, the aging effect is introduced by an
aging function. To this point, we conjecture that there might
be similar scaling behaviors of C in networks generated by
other forms of aging mechanism.

Finally, it is worthwhile to point out that, to our knowl-
edge, no empirical data are available to illustrate the theoret-
ical scaling behavior of clustering coefficient. Nevertheless,
this interesting property is due to the deactivation process
which is a special case of aging effect. In network evolution,
aging is a universal mechanism. Therefore, this simple theo-
retical result of C will have a rich practical significance and
potential applications in future network research. Mean-
while, such scaling behavior of C should be given further
considerations from empirical investigations.

In summary, motivated by the aging effect governing the
evolution of the coauthor and paper citation networks, a gen-
eralized deactivation model of network called GKE is pre-
sented in this paper. We study analytically and by simula-
tions several topological features of this model, such as the
degree distribution and clustering coefficient. Most impor-
tantly, an interesting scaling behavior of the clustering coef-
ficient C�1/M is obtained, which shows that the numerical
result recently observed in the coauthor and paper citation
networks is due to deactivation mechanism. By introducing a

FIG. 8. �Color online� Illustration of the clustering coefficient C
as a function of number of active nodes M, with perturbation pa-
rameter p=0.00 �squares�, p=0.01 �upward triangles�, p=0.10
�downward triangles�, p=0.50 �diamonds�, and p=1.00 �circles�.
The average fit slope for the simulations is 0.994. Other parameters
for these simulations are m=10 and N=2�104. Each data point is
obtained as an average of 100 independent runs. The dashed line
has slope −1.0 for comparison.

FIG. 9. �Color online� Illustration of the clustering coefficient C
as a function of perturbation parameter p. The fit slope is 0.223.
Other parameters for this simulation are m=4, M =10, and
N=2�104. Each data point is obtained as an average of 100 inde-
pendent runs.
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perturbation, the GKE network undergoes a small-world
phase transition, while the scaling behavior of C is con-
served. It indicates that C�1/M is a universal scaling be-
havior of clustering coefficient induced by deactivation
mechanism. In addition, we would like to emphasize that our
study unifies the concept of regular lattice, small-world
graphs and scale-free networks in a single model, and the
GKE model generalizes the new class of the networks with a
crucial parameter M.

Since the GKE networks present peculiar structure prop-
erty, it will be interesting to investigate the effect of their
complex topology features on the network dynamics
�25,29–31�. Especially, the clustering coefficient of GKE net-

work is precisely tunable by parameter M or p without
changing the degree distribution. Therefore, the model can
be used to quantitatively study the effect of clustering on
network synchronization �32–34� and network epidemics
�31,35�. Research along this line is in progress.
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